

MathJax Documentation

MathJax is an open-source JavaScript display engine for LaTeX,
MathML, and AsciiMath notation that works in all modern browsers,
with built-in support for assistive technology like screen readers.

Version 3.0 of MathJax is a complete rewrite of MathJax from the
ground up, and its usage and configuration is significantly different
from that of MathJax version 2. Use the green menu at the bottom of
the sidebar on the left to access the version 2 documentation if you
need it.

The Basics

	What is MathJax?

	MathJax Accessibility Features

	Writing Mathematics for MathJax

	The MathJax Community

	Reporting Issues with MathJax

Including MathJax in a Web Page

	 Getting Started with Components

	 Configuring and Loading MathJax

	 The MathJax Components

	 Typesetting and Converting Math

	 Hosting Your Own Copy of MathJax

	 Making a Custom Build of MathJax

	 Examples in a Browser

MathJax on a Server Using NodeJS

	Getting Started with Node

	Three Ways to Use MathJax in Node
	Using MathJax Components

	Loading Components by Hand

	Linking to MathJax Directly

	Examples in Node

MathJax Input

	TeX and LaTeX Support

	MathML Support

	AsciiMath Support

MathJax Output

	Output Formats
	HTML Support

	SVG Support

	MathML Support

	Line Breaking

	Font Support

	Browser Support

Configuration Options

	Configuring MathJax
	Input Processor Options

	Output Processor Options

	Document Options

	Accessibility Extensions Options

	Contextual Menu Options

	Safe Extension Options

	Startup and Loader Options

Advanced topics

	MathJax in Dynamic Content

	Custom Extensions

	The MathJax Processing Model

	Synchronizing Your Code with MathJax

The MathJax API

	Using the MathJax API
	The Component API

	The Direct API

Miscellaneous

	MathJax FAQ

	MathJax Badges and Logo

	Articles and Presentations

MathJax Updates

	Upgrading from Version 2.x

	What's New
	In MathJax v3.1

	In MathJax v3.0

	In Earlier Versions

[image: powered-by NumFocus]
 [http://www.numfocus.org]MathJax is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit
charity in the United States. NumFOCUS provides MathJax with fiscal,
legal, and administrative support to help ensure the health and
sustainability of the project. Visit numfocus.org [http://www.numfocus.org] for more
information.

This version of the documentation was built Jun 08, 2021.

 What is MathJax?

What is MathJax?

MathJax is an open-source JavaScript display engine for LaTeX, MathML,
and AsciiMath notation that works in all modern browsers. It was
designed with the goal of consolidating the recent advances in web
technologies into a single, definitive, math-on-the-web platform
supporting the major browsers and operating systems, including those
on mobile devices. It requires no setup on the part of the user (no
plugins to download or software to install), so the page author can
write web documents that include mathematics and be confident that
users will be able to view it naturally and easily. One simply
includes MathJax and some mathematics in a web page, and MathJax does
the rest.

MathJax uses web-based fonts to produce high-quality typesetting that
scales and prints at full resolution, unlike mathematics included as
bitmapped images. With MathJax, mathematics is text-based rather than
image-based, and so it is available for search engines, meaning that
your equations can be searchable, just like the text of your pages.
MathJax allows page authors to write formulas using TeX and LaTeX
notation, MathML [http://www.w3.org/TR/MathML3] (a World Wide Web
Consortium standard for representing mathematics in XML format), or
AsciiMath [http://asciimath.org/] notation. MathJax can generate
output in several formats, including HTML with CSS styling, or
scalable vector graphics (SVG) images.

MathJax includes the ability to generate speakable text versions of
your mathematical expressions that can be used with screen readers,
providing accessibility for the visually impaired. The assistive
support in MathJax also includes an interactive expression explorer
that helps these users to “walk through” an expression one piece at a
time, rather than having to listen to a complex expression all at
once, and the ability to “collapse” portions of the expressions to
allow a more simplified expression to be read, and only expanded if
more detail is desired.

MathJax is modular, so it can load components only when necessary, and
can be extended to include new capabilities as needed. MathJax is
highly configurable, allowing authors to customize it for the special
requirements of their web sites. Unlike earlier versions of MathJax,
version 3 can be packaged into a single file, or included as part of
larger bundles for those sites that manage their javascript assets in
that way.

Finally, MathJax has a rich application programming interface (API)
that can be used to make the mathematics on your web pages interactive
and dynamic. Version 3 has been rewritten in ES6 using Typescript (a
version of javascript that includes type-checking and the ability to
transpile to ES5). It was designed to be used as easily on a server
(as part of a node.js application) as it is in a browser. This makes
pre-processing of web pages containing mathematics much easier than
with version 2, so web sites can perform all the math processing once
up front, rather than having the browser do it each time the page is
viewed.

 Accessibility Features

Accessibility Features

MathJax’s mission is to provide the best tools for mathematics on the
web. Naturally, this means for everyone and thus accessibility is an
important concern for us.

MathJax User Interface

The MathJax user interface currently consists of the MathJax
Menu and the various MathJax messages, such as
syntax error messages from the TeX input processor.

The user interface for version 2 was localized to over 20 languages
and many more partial localizations thanks to the fantastic support of
the community at TranslateWiki.net [https://translatewiki.net/wiki/Translating:MathJax]. Localization
is not yet available in version 3, but is on the roadmap for a future
version.

The MathJax Menu follows WCAG 2.0 guidelines. Each MathJax fragment is
included in the tab order; the menu can be triggered via the space or
menu key; and navigation in the menu is possible using the arrow keys.

MathJax Accessibility Extensions

The MathJax Accessibility extensions provide
several tools and features that enable universal rendering of
mathematics on the web. They enhance rendering both visually and
aurally. In particular:

	An innovative responsive rendering of mathematical content through collapsing
and exploration of subexpressions.

	An aural rendering tool providing on-the-fly speech-text for mathematical
content and its subexpressions using various rule sets.

	Tactile rendering tool enabling Nemeth Braille output on a connecte Braille
displays.

	An exploration tool, allowing for meaningful exploration of mathematical
content including multiple highlighting features, magnification and
synchronized aural rendering.

The Accessibility Extensions support the widest selection of browsers,
operating systems, and assistive technologies as they only require
the use of well-supported web standards such as WAI-ARIA, in
particular labels and live regions.

The Accessibility Extensions can be enabled using the MathJax
Contextual Menu (right-click on any typeset expression), and are
loaded automatically when enabled. The contextual menu code is
included in all the combined MathJax components, such as tex-chtml
and mml-svg. If you are making a custom configuration, you can
include ui/menu to enable the contextual menu, or you can include
any of the a11y extensions explicitly.

See the Accessibility Extensions Options section for details about how to
configure the extensions.

Screen Reader Support

Some screen readers support MathML, MathJax’s internal format.
Screenreaders like ChromeVox, JAWS (on IE), and TextHelp support
MathJax directly (most only version 2); other screenreaders are
supported by the assistive-mml extension as of version 3.0.1.

The assistive-mml extension embeds visually hidden MathML alongside
MathJax’s visual rendering while hiding the visual rendering from
assistive technology (AT) such as screenreaders. This allows most
MathML-enabled screenreaders to read out the underlying
mathematics. It’s important to note that Presentation MathML is
usually not expressive enough to voice the mathematics properly in all
circumstances, which is why screenreaders have to rely on heuristics
to analyze the MathML semantically.

The quality of MathML support in screenreaders varies greatly, with
different levels of MathML feature support, different speech rule
sets, and different voicing technologies.

The expected result for MathJax given the current state of technology
is roughly the following:

	The visually-hidden MathML is read out correctly by AT (i.e., not
just the character strings but, e.g., <mfrac> leads to
“fraction”; this will vary with the MathML support of the
screenreader).

	The visual rendering is not read out by AT

	The MathJax Menu triggers AT to say “clickable” before each math element.

	This allows keyboard users to enter the MathJax Menu via space or menu key.

	The visually hidden MathML does not get an outline (usually placed
at an odd location due to the target of the outline being visually
hidden).

	except in iOS VoiceOver, where this allows the user to hook into VoiceOver’s exploration features.

More Information

	Accessibility extensions
	Interactive Exploration
	Available keyboard commands
	Overview of key bindings
	Essential Keys

	Advanced Options

	Special key combinations for navigating tables

	Special Notes

	Speech & Braille Support

	Abstraction

	Highlight

	Magnification

	Semantic Info

	Available explorer keyboard commands
	Overview of key bindings
	Essential Keys

	Advanced Options

	Special key combinations for navigating tables

	Special Notes

	Legacy Assistive Support in v2
	Support Matrix (AssistiveMML.js)

	Notes on Apple VoiceOver

	Notes on MathPlayer 4 and Internet Explorer 11

 Accessibility Extension

Accessibility Extension

MathJax offers accessibility support via its own built-in extension that
provides a choice of support options as well as a high degree of
personalization. The extension can be activated either via the context menu,
which itself is fully accessible, or by default using configuration
options. Similarly its various features and options are best selected via the
MathJax Menu or programmatically using the
accessibility options. We discuss
the different features of the accessibility tool at the hand of the context
menu, roughly in the order in which they appear.

Most features of the Accessibility extensions are based on technology provided by
the Speech Rule Engine [https://speechruleengine.org]. For some more details
and information please also see there.

MathJax’s supports the widest selection of browsers, operating systems, and
assistive technologies as they only require the use of well-supported web
standards such as WAI-ARIA, in particular labels and live regions.

Interactive Exploration

The main feature is an interactive exploration mode that allows a reader to
traverse and explore sub-expressions step-by-step. The explorer is activated in
the context menu by checking the Activate item in the Accessibility
sub-menu.

Once a math expression is focused, the explorer can be started by pressing the
 Enter key. The cursor keys then allow traversal of the expression.

	Available keyboard commands

During traversal, focused sub-expressions are highlighted and optionally
magnified. In addition, an aural rendering is pushed to a screen reader, if one
is available, and a tactile rendering can be read on a Braille display, if one
is connected.

Speech & Braille Support

Both aural and tactile rendering can be controlled via the options in the
Speech sub-menu. Speech Output and Braille Output, respectively,
control whether or not speech or Braille output is generated. If speech is
generated, it is by default also displayed in Speech Subtitles, which can be
switched off and hidden. Braille on the other hand is by default hidden but can
be displayed by switching on the Braille Subtitles.

Speech is generally generated with respect to the currently chosen locale (if it
is available). In addition, there are a number of different rule sets that can
be chosen for translating math to text, where each can have a number of
different preferences for how a particular expression is spoken. By default, MathJax
uses the MathSpeak rule set in Verbose mode; however, the menu allows this
to be changed to either the ClearSpeak or ChromeVox. Each rule set has
several different preference settings; three in the case of MathSpeak, for example,
which primarily influence the length of produced text. ClearSpeak [https://docs.wiris.com/en/mathtype/mathtype_desktop/accessibility/clearspeak]
on the other hand has a large number of preferences that allow very fine-tuned
control over how different types of expressions are spoken. The MathJax menu
allows a smart choice of preferences by only displaying the preferences that
are currently relevant for the sub-expression that is currently explored.
The Select Preferences option opens a selection box for all possible
ClearSpeak preference choices.

Some rule-set and preference settings can also be controlled by keyboard
commands. This allows the user to have the same expression read in different
variants without having to leave the exploration mode. The > key
switches rule sets between MathSpeak and ClearSpeak if both are available for
the current locale. The < key cycles preferences for the currently
active rule set. For ClearSpeak rules, preference cycling depends on the type
of the currently explored sub-expression, similar to smart selection of menu
entries.

The speech language can be adjusted in the Language sub-menu in the
Speech options. MathJax currently only supports speech in English,
French, German, and Spanish. The only available Braille output is
Nemeth. We are hoping to add more in the future.

In addition to voicing expressions, the explorer allows for queries on
sub-expression, such as getting positional information with respect to the
context, as well as summaries of the sub-expression currently explored.

Abstraction

In addition to textual summaries of expressions, MathJax offers the
possibility to abstract certain sub-expressions so that the entire
sub-expression is visually replaced by a placeholder symbol and
interactive traversal treats it as a single element. This allows the
reader to abstract away details and to better observe the overall
structure of a formula.

Abstraction can be triggered either via mouse click on a collapsible
expression or via pressing the Enter key during keyboard
exploration. Expressions that can be abstracted can also be discovered
using some of the highlighting features.

Highlight

During interactive exploration, the sub-expression that is explorered is
automatically highlighted, by default with a blue background color. The
highlighting can be customized by changing Background or Foreground
colors in in the Highlight sub-menu of the MathJax contextual menu.
In addition, the opacity of both Background and Foreground can be
adjusted by two slider bars underneath the respective sub-menus.

The Highlight sub-menu also provides a choice of highlighters for
marking collapsible sub-expressions: The Flame highligher permanently
colors collapsible sub-expressions while successively darkening the
background for nested collapsible expressions. The Hover highlighter
colors each collapsible sub-expression only when hovering over it with
the mouse pointer.

A final highlighting feature is Tree Coloring, in which expressions are
visually distinguished by giving neighbouring symbols different, ideally
contrasting foreground colors.

Magnification

During exploration, the accessibility extension can optionally magnify
the sub-expression that is currently explored. The zoomed version of
the expression is overlayed on the original one when traversing the
formula. For keyboard exploration, this can be switched on in the
Magnification sub-menu by selecting the Keyboard option.

A similar effect can be achieved by exploring an expression with the mouse.
When using the Mouse option in the Magnification sub-menu, the
sub-expression over which the mouse pointer hovers is zoomed.

The zoom factor of the magnification can also be adjusted. The values
available in the context menu are 200%, 300%, 400%, and
500%.

Semantic Info

The Semantic Info sub-menu contains a number of options that allow the reader to see
the semantic classifications MathJax applies to a particular sub-expression, by
hovering over it with the mouse pointer. The choices here are

	Type
is an immutable property of an expression that is independent
of its particular position in a formula. Note, however that types can change
depending on the subject area of a document.

	Role
is dependent on the context of a sub-expression in the overall expression.

	Prefix
is information pertaining to the position of a
sub-expression. Examples are 'exponent', 'radicand', etc. These would
also be spoken during interactive exploration.

For more details on all of these concepts, see also the documentation of the
Speech Rule Engine [https://speechruleengine.org].

 Keyboard Explorer Commands

Keyboard Explorer Commands

The keyboard explorer is used to interact with a mathematical expression using
keyboard commands. Interaction allows a reader to traverse an expression in a
mathematical meaningful way, examining sub-expressions and diving into details as
they see fit.

The keyboard explorer supports multiple types of output: Speech and
Braille output for the sub-expression that is explored, magnification of that
sub-expression, and synchronised highlighting with the navigation.

Navigation can be started when a MathJax expression is focused and quit at any
time during the exploration. When navigation is restarted, the application will
continue where the user has left off within the expression.

Overview of key bindings

Essential Keys

	Enter	Activate explorer. Requires math expression to have the focus.

	Escape	Leave exploration mode.

	

 Keyboard Explorer Commands

Keyboard Explorer Commands

The keyboard explorer is used to interact with a mathematical expression using
keyboard commands. Interaction allows a reader to traverse an expression in a
mathematical meaningful way, examining sub-expressions and diving into details as
they see fit.

The keyboard explorer supports multiple types of output: Speech and
Braille output for the sub-expression that is explored, magnification of that
sub-expression, and synchronised highlighting with the navigation.

Navigation can be started when a MathJax expression is focused and quit at any
time during the exploration. When navigation is restarted, the application will
continue where the user has left off within the expression.

Overview of key bindings

Essential Keys

	Enter	Activate explorer. Requires math expression to have the focus.

	Escape	Leave exploration mode.

	

 Legacy Assistive Support in v2

Legacy Assistive Support in v2

Interactions between screen readers and MathJax are delicate and vary
from browser to broswer, operating system to operating system, and
screen reader to screen reader. The following information was
gathered over time for version 2 of MathJax and various
broser/operating-system/screen-reader combinations. The information
is several years old, and my no longer be completely accurate, as
features in browsers and screen readers change regularly. Because
this inforamtion changes regularly with updates to browsers and screen
readers, we are unable to maintin a table like this for version 3.

Support Matrix (AssistiveMML.js)

Below is a summary of results for MathML enabled screenreaders and the
legacy AssistiveMML extension, based on tests as well as user reports.

 	Screenreader
 	Browser
 	OS
 	Usable?
 	Bugs

 	ChromeVox
 	Chrome
 	any
 	+1
 	no bugs

 	NVDA
 	any
 	WinXP
 	DNA
 	MathPlayer 4 does not support WinXP

 	NVDA
 	Chrome
 	any
 	DNA
 	Chrome issues prevent MathML support by NVDA

 	NVDA
 	Firefox
 	Win7
 	+1
 	no bugs

 	NVDA
 	Firefox
 	Win8.1
 	+1
 	no bugs

 	NVDA
 	Firefox
 	Win10
 	+1
 	no bugs

 	NVDA
 	MS Edge
 	Win10
 	DNA
 	Edge issues prevent MathML support by NVDA

 	NVDA
 	IE11
 	Win8.1
 	+1
 	no bugs

 	NVDA
 	IE10
 	Win7
 	+1
 	no bugs

 	NVDA
 	IE9
 	Win7
 	+1
 	no bugs

 	JAWS
 	any
 	WinXP
 	DNA
 	JAWS 15 was the last version to support Windows XP but MathML support in JAWS starts with JAWS 16

 	JAWS
 	Chrome
 	any
 	DNA
 	JAWS only supports IE and Firefox

 	JAWS
 	Firefox
 	Win8.1
 	+1
 	no bugs

 	JAWS
 	Firefox
 	Win7
 	+1
 	no bugs

 	JAWS
 	Firefox
 	Win10
 	+1
 	no bugs

 	JAWS
 	MS Edge
 	Win10
 	DNA
 	JAWS only supports IE and Firefox

 	JAWS
 	IE11
 	Win8.1
 	+1
 	no bugs

 	JAWS
 	IE10
 	Win7
 	+1
 	no bugs

 	JAWS
 	IE9
 	Win7
 	+1
 	no bugs

 	VoiceOver
 	Safari
 	OSX
 	+1
 	see notes below

 	VoiceOver
 	Chrome
 	OSX
 	DNA
 	Chrome and VoiceOver issues prevent MathML support in this combination.

 	VoiceOver
 	Firefox
 	OSX
 	DNA
 	Chrome and Firefox issues prevent MathML support in this combination.

 	Orca
 	Firefox
 	Ubuntu 15.10
 	+1
 	no bugs

 	Orca
 	Web
 	Ubuntu 15.10
 	DNA
 	Chrome issues prevent MathML support by ORCA

 	Orca
 	Chrome(ium)
 	Ubuntu 15.10
 	DNA
 	Chrome issues prevent MathML support by ORCA

Notes on Apple VoiceOver

	VoiceOver on OSX

	Safari. The visually-hidden MathML is read out and gets an
outline. Visual rendering is ignored correctly. VoiceOver
somtimes drops parts of the equation due to its partial MathML
support.

	Chrome. The visually-hidden MathML is detected but VoiceOver
does not read it correctly (only e.g., “4 items detected; math”;
this seems like a VO bug); an outline is added. Visual rendering
is ignored correctly.

	Firefox. The visually-hidden MathML is only read as a string of
contained characters; an outline is added. Visual rendering is
ignored correctly.

	VoiceOver on iOS

	The “slide two fingers from top to read screen” method will read
the visually-hidden MathML. Visual rendering is ignored correctly.

	Manual exploration.

	Exploration by swiping left/right will read the visually-hidden MathML. Visual rendering is ignored correctly.

	Tapping on an equation does not work due to the visually-hidden MathML being placed in a 1px box.

Notes on MathPlayer 4 and Internet Explorer 11

Design Science suggests that you always use IE’s Enterprise mode for
MathPlayer in IE11, see their documentation [http://www.dessci.com/en/products/mathplayer/tech/default.htm#Enterprise_mode].
However, it seems that this is only required for MathPlayer’s visual
rendering to work and this additionally requires the MathPlayer
BrowserHelperAddon to be active in IE.

Unfortunately, the MathPlayer BrowserHelperAddon can lead to
crashes. E.g., if you switch MathJax’s output to the NativeMML output,
MathPlayer will crash IE11; you’ll have to clear the MathJax cookie
to reset things. Also, in a plain MathML sample (without MathJax),
clicking on the MathPlayer rendering will crash IE11.

Using IE’s Enterprise mode should work with NVDA and the AssistiveMML extension
but they don’t seem to work with NVDA and plain MathML pages.

We suggest you do not switch on IE’s Enterprise mode on pages using MathJax and
we also have to strongly suggest that you not use the BrowserHelperAddon with MathJax
on IE11.

 Writing Mathematics for MathJax

Writing Mathematics for MathJax

Putting mathematics in a web page

To put mathematics in your web page, you can use TeX and LaTeX
notation, MathML notation, AsciiMath notation, or a combination of all
three within the same page; the MathJax configuration tells MathJax
which you want to use, and how you plan to indicate the mathematics
when you are using TeX/LaTeX or AsciiMath notation. These three
formats are described in more detail below.

TeX and LaTeX input

Mathematics that is written in TeX or LaTeX format is indicated using
math delimiters that surround the mathematics, telling MathJax what
part of your page represents mathematics and what is normal text.
There are two types of equations: ones that occur within a paragraph
(in-line mathematics), and larger equations that appear separated from
the rest of the text on lines by themselves (displayed mathematics).

The default math delimiters are $$...$$ and \[...\] for
displayed mathematics, and \(...\) for in-line mathematics. Note
in particular that the $...$ in-line delimiters are not used
by default. That is because dollar signs appear too often in
non-mathematical settings, which could cause some text to be treated
as mathematics unexpectedly. For example, with single-dollar
delimiters, “… the cost is $2.50 for the first one, and $2.00 for
each additional one …” would cause the phrase “2.50 for the first
one, and” to be treated as mathematics since it falls between dollar
signs. See the section on TeX and LaTeX Math Delimiters for more information on using dollar signs as
delimiters.

Here is a complete sample page containing TeX mathematics (see the
MathJax Web Demos Repository [https://github.com/mathjax/MathJax-demos-web]
for more).

<!DOCTYPE html>
<html>
<head>
<title>MathJax TeX Test Page</title>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script type="text/javascript" id="MathJax-script" async
 src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js">
</script>
</head>
<body>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
</body>
</html>

Since the TeX notation is part of the text of the page, there are some
caveats that you must keep in mind when you enter your mathematics. In
particular, you need to be careful about the use of less-than signs,
since those are what the browser uses to indicate the start of a tag
in HTML. Putting a space on both sides of the less-than sign should be
sufficient, but see TeX and LaTeX support for
more details.

If you are using MathJax within a blog, wiki, or other content
management system, the markup language used by that system may
interfere with the TeX notation used by MathJax. For example, if your
blog uses Markdown notation for authoring your pages, the underscores
used by TeX to indicate subscripts may be confused with the use of
underscores by Markdown to indicate italics, and the two uses may
prevent your mathematics from being displayed. See TeX and
LaTeX support for some suggestions about how to deal
with the problem.

There are a number of extensions for the TeX input processor that are
loaded by combined components that include the TeX input format (e.g.,
tex-chtml.js), and others that are loaded automatically when
needed. See TeX and LaTeX Extensions for
details on TeX extensions that are available.

MathML input

For mathematics written in MathML notation, you mark your mathematics
using standard <math> tags, where <math display="block">
represents displayed mathematics and <math display="inline"> or
just <math> represents in-line mathematics.

MathML notation will work with MathJax in HTML files, not just XHTML
files, even in older browsers and that the web page need not be served
with any special MIME-type. Note, however, that in HTML (as opposed to
XHTML), you should not include a namespace prefix for your <math>
tags; for example, you should not use <m:math> except in an XHTML file
where you have tied the m namespace to the MathML DTD by adding the
xmlns:m="http://www.w3.org/1998/Math/MathML" attribute to your file’s
<html> tag.

In order to make your MathML work in the widest range of situations,
it is recommended that you include the
xmlns="http://www.w3.org/1998/Math/MathML" attribute on all
<math> tags in your document (and this is preferred to the use of
a namespace prefix like m: above, since those are deprecated in
HTML5), although this is not strictly required.

Here is a complete sample page containing MathML mathematics (see the
MathJax Web Demos Repository [https://github.com/mathjax/MathJax-demos-web]
for more).

<!DOCTYPE html>
<html>
<head>
<title>MathJax MathML Test Page</title>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script type="text/javascript" id="MathJax-script" async
 src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/mml-chtml.js">
</script>
</head>
<body>

<p>
When
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <mi>a</mi><mo>≠</mo><mn>0</mn>
</math>,
there are two solutions to
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <mi>a</mi><msup><mi>x</mi><mn>2</mn></msup>
 <mo>+</mo> <mi>b</mi><mi>x</mi>
 <mo>+</mo> <mi>c</mi> <mo>=</mo> <mn>0</mn>
</math>
and they are
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
 <mi>x</mi> <mo>=</mo>
 <mrow>
 <mfrac>
 <mrow>
 <mo>−</mo>
 <mi>b</mi>
 <mo>±</mo>
 <msqrt>
 <msup><mi>b</mi><mn>2</mn></msup>
 <mo>−</mo>
 <mn>4</mn><mi>a</mi><mi>c</mi>
 </msqrt>
 </mrow>
 <mrow>
 <mn>2</mn><mi>a</mi>
 </mrow>
 </mfrac>
 </mrow>
 <mtext>.</mtext>
</math>
</p>

</body>
</html>

When entering MathML notation in an HTML page (rather than an XHTML
page), you should not use self-closing tags, as these are not part
of HTML, but should use explicit open and close tags for all your math
elements. For example, you should use

<mspace width="5pt"></mspace>

rather than <mspace width="5pt" /> in an HTML document. If you
use the self-closing form, some browsers will not build the math tree
properly, and MathJax will receive a damaged math structure, which
will not be rendered as the original notation would have been.
Typically, this will cause parts of your expression to not be
displayed. Unfortunately, there is nothing MathJax can do about that,
since the browser has incorrectly interpreted the tags long before
MathJax has a chance to work with them.

See the MathML page for more on MathJax’s
MathML support.

AsciiMath input

MathJax v2.0 introduced a new input format, AsciiMath notation, by
incorporating ASCIIMathML [https://en.wikipedia.org/wiki/ASCIIMathML].
This input processor has not been fully ported to MathJax version 3
yet, but there is a version of it that uses the legacy version 2 code
to patch it into MathJax version 3. None of the combined components
currently include it, so you would need to specify it explicitly in
your MathJax configuration in order to use it. See the
AsciiMath page for more details.

By default, you mark mathematical expressions written in AsciiMath by
surrounding them in “back-ticks”, i.e., `...`.

Here is a complete sample page containing AsciiMath notation:

<!DOCTYPE html>
<html>
<head>
<title>MathJax AsciiMath Test Page</title>
<script>
MathJax = {
 loader: {load: ['input/asciimath', 'output/chtml']}
}
</script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script type="text/javascript" id="MathJax-script" async
 src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/startup.js">
</script>
<body>

<p>When `a != 0`, there are two solutions to `ax^2 + bx + c = 0` and
they are</p>
<p style="text-align:center">
 `x = (-b +- sqrt(b^2-4ac))/(2a) .`
</p>

</body>
</html>

See the AsciiMath support page for more on
MathJax’s AsciiMath support and how to configure it.

Putting Math in Javascript Strings

If your are using javascript to process mathematics, and need to put a
TeX or LaTeX expression in a string literal, you need to be aware that
javascript uses the backslash (\) as a special character in
strings. Since TeX uses the backslash to indicate a macro name, you
often need backslashes in your javascript strings. In order to
achieve this, you must double all the backslashes that you want to
have as part of your javascript string. For example,

var math = '\\frac{1}{\\sqrt{x^2 + 1}}';

This can be particularly confusing when you are using the LaTeX macro
\, which must both be doubled, as \. So you would do

var array = '\\begin{array}{cc} a & b \\\\ c & d \\end{array}';

to produce an array with two rows.

 The MathJax Community

The MathJax Community

If you are an active MathJax user, you may wish to become involved in
the wider community of MathJax users. The MathJax project maintains
forums where users can ask questions about how to use MathJax, make
suggestions about future features for MathJax, and present their own
solutions to problems that they have faced. There is also a
bug-tracking system where you can report errors that you have found
with MathJax in your environment.

Mailing Lists

If you need help using MathJax or you have solutions you want to
share, please post to the MathJax Users Google Group [https://groups.google.com/forum/#!forum/mathjax-users]. We try
hard to answer questions quickly, and users are welcome to help with
that as well. Also, users can post code snippets showing how they have
used MathJax, so it may be a good place to find the examples you are
looking for.

If you want to discuss MathJax development, please use the MathJax
Dev Google Group [https://groups.google.com/forum/#!forum/mathjax-dev]. We made this
group to discuss anything beyond what an end-user might be interested
in, so if you have any suggestions or questions about MathJax
performance, technology, or design, feel free to submit it to the
group.

The community is only as good as the users who participate, so if you
have something to offer, please take time to make a post on one of our
groups.

Issue tracking

Found a bug or want to suggest an improvement? Post it to our issue
tracker [http://github.com/mathjax/MathJax/issues]. We monitor the
tracker closely, and work hard to respond to problems quickly.

Before you create a new issue, however, please search the issues to
see if it has already been reported. You could also be using an
outdated version of MathJax, so be sure to upgrade your copy to verify that the problem persists in the
latest version.

See the section on Reporting Issues for more
detailed instructions.

Documentation

The source for this documentation can be found on github [https://github.com/mathjax/mathjax-docs/]. You can file bug
reports on the documentation’s bug tracker [https://github.com/mathjax/mathjax-docs/issues] and actively
contribute to the public documentation wiki [https://github.com/mathjax/mathjax-docs/wiki].

“Powered by MathJax”

If you are using MathJax and want to show your support, please
consider using our “Powered by MathJax” badge.

 Reporting Issues

Reporting Issues

If you come across a problem with MathJax, please report it so that the
development team and other users are aware and can look into it. It is
important that you report your problem following the steps outlined here
because this will help us to rapidly establish the nature of the problem
and work towards a solution effectively.

To report a problem, please follow these steps:

	Have you cleared your browser cache, quit your browser, and restarted
it? If not, please do so first and check if the problem persists.
These instructions [http://www.wikihow.com/Clear-Your-Browser's-Cache]
tell you how to clear your cache on the major browsers.

	Have you turned off other extensions and plugins in your browser, and
restarted it?

	Have a look at the math rendering examples on
www.mathjax.org [https://www.mathjax.org] to see if you experience
problems there as well. This might help you to determine the nature
of your problem.

	If possible, check whether the problem has been solved in the latest
MathJax release.

	Search through the MathJax User
Group [https://groups.google.com/forum/#!forum/mathjax-users] and the
MathJax issue tracker [https://github.com/mathjax/MathJax/issues] to see if
anyone else has come across the problem before.

	Found a real and new problem? Please report it to the MathJax issue
tracker [https://github.com/mathjax/MathJax/issues] including the
following information:

	A detailed description of the problem. What exactly is not working
as you expected? What do you see?

	The MathJax version you are working with, your operating system,
and full browser information including all version information.

	If at all possible, a pointer to a webpage that is publicly
available and exhibits the problem. This makes sure that we can
reproduce the problem and test possible solutions. You can
create minimal examples using such tools as jsfiddle [https://jsfiddle.net/], jsbin [https://jsbin.com],
codepen [https://codepen.io], or codesandbox [https://codesandbox.io].

 Getting Started with MathJax Components

Getting Started with MathJax Components

MathJax allows you to include mathematics in your web pages, either
using LaTeX, MathML, or AsciiMath notation, and the mathematics will
be processed using JavaScript to produce HTML or SVG for viewing in
any modern browser.

MathJax Components

To make using MathJax easier in web pages, the various pieces that
make up MathJax have been packaged into separate files called
“components”. For example, there is a component for MathML input, and
one for SVG output, and the various TeX extensions are packaged as
separate components. You can mix and match the various components to
customize MathJax to suit your particular needs (this is described in
detail in the section on Configuring MathJax below); the
individual component files that you specify are loaded when MathJax
starts up.

There are also components that combine several others into one larger
file that loads everything you need to run MathJax all at once. These
represent some of the standard combinations of input and output
formats, and you will probably find one of these that suits your
needs. You can configure the various
components in order to customize how they run, even when they are
loaded as part of a combined component. For example, you can set the
delimiters to be used for in-line and displayed math for the TeX input
component whether the TeX component was loaded individually, or as
part of the tex-chtml component.

It is even possible for you to create your own components or custom
builds of MathJax, or incorporate the MathJax components into larger
files that contain other assets your website might need (see the
section on Making a Custom Build of MathJax for more details).

Ways of Accessing MathJax

There are two ways to access MathJax for inclusion in web pages: link
to a content delivery network (CDN) like cdn.jsdelivr.net to obtain a
copy of MathJax, or download and install a copy of MathJax on your own
server (for network access) or hard disk (for local use without a
network connection). The first method is described below, while the
second is discussed in the section on Hosting Your Own Copy of MathJax.

This page gives the quickest and easiest ways
to get MathJax up and running on your web site, but you may want to
read the details in the linked sections in order to customize the
setup for your pages.

Using MathJax from a Content Delivery Network (CDN)

The easiest way to use MathJax is to link directly to a public
installation available through a Content Distribution Network (CDN).
When you use a CDN, there is no need to install MathJax yourself, and
you can begin using MathJax right away. The CDN will automatically
arrange for your readers to download MathJax files from a fast, nearby
server.

To use MathJax from a CDN, you need to do three things:

	Include a MathJax configuration in your page (this may be optional
in some cases).

	Link to MathJax in the web pages that are to include mathematics.

	Put mathematics into your web pages so that MathJax can display
it.

There are many free CDN services that provide copies of MathJax. Most
of them require you to specify a particular version of MathJax to
load, but some provide “rolling releases”, i.e., links that update to
the latest available version upon release (note that we also provide a
means of obtaining the latest version automatically, described below).

	jsdelivr.com [https://jsdelivr.com] [latest or specific version] (recommended)

	unpkg.com [https://unpkg.com/] [latest or specific version]

	cdnjs.com [https://cdnjs.com]

	raw.githack.com [http://raw.githack.com]

	gitcdn.xyz [http://gitcdn.xyz/]

	cdn.statically.io [http://cdn.statically.io]

To jump start using jsdelivr, you accomplish the first two steps by putting

<script type="text/javascript" id="MathJax-script" async
 src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">
</script>

into the <head> block of your document. (It can also go in the
<body> if necessary, but the head is to be preferred.) This will
load the latest 3.x.x version of MathJax from the distributed server,
configure it to recognize mathematics in both TeX and MathML notation,
and ask it to generate its output using HTML with CSS (the CommonHTML
output format) to display the mathematics.

Warning

The tex-mml-chtml.js file includes all the pieces needed for
MathJax to process these two input formats and produce this
output format. There are several other choices with different
input/output combinations, and and you can even configure MathJax to
load components individually.

We list this file here because it will get you started quickly with
MathJax without having to worry too much about configurations; but
since it is one of the most general of the combined component files,
it is also one of the largest, so you might want to consider a
smaller one that is more tailored to your needs. See the section on
Configuring and Loading MathJax for more details on how this is done, and
on The MathJax Components for information about the components
themselves.

If you use the code snippet given above, you will not need to change
the URL whenever MathJax is updated and the version changes, because
jsdelivr offers the mathjax@3 notation for obtaining the
tex-mml-chtml.js file from the latest version (3.x.x) available on
the CDN.

Getting the Latest Version

Although jsdelivr provides a means of getting the latest version
automatically, as described above, not all CDNs have a mechanism for
that. For such CDNs, MathJax provides a latest.js file that can
be used to obtain the latest (3.x.x) version of MathJax. For example,
cdnjs doesn’t have a mechanism for getting the latest 3.x.x
version automatically, so you can use

<script type="text/javascript" id="MathJax-script" async
 src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.0.0/es5/latest?tex-mml-chtml.js">
</script>

to obtain the latest (3.x.x) version of the tex-mml-chtml
component from cdnjs; even though you have started by asking for
version 3.0.0, the latest.js script will switch to the latest
3.x.x version automatically.

Getting a Specific Version

It is also possible to always use a specific version, regardless of
the current version of MathJax. To do this, simply give the full
version number in the URL; for example:

<script id="MathJax-script" async
 src="https://cdn.jsdelivr.net/npm/mathjax@3.0.0/es5/tex-mml-chtml.js">
</script>

will always load version 3.0.0 of the tex-mml-chtml.js combined
component file.

Other CDNs have slightly different formats for how to specify the
version number. For example, cdnjs uses the following:

<script type="text/javascript" id="MathJax-script" async
 src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.0.0/es5/tex-mml-chtml.js">
</script>

to get the same file.

Browser Compatibility

MathJax supports all modern browsers (Chrome, Safari,
Firefox, Edge), and most mobile browsers. Include the
polyfill [https://polyfill.io/v3/] library in order to support
earlier browser versions (see their browser support [https://polyfill.io/v3/supported-browsers/] page for details).
In particular, to allow MathJax version 3 to work with IE11, include the line

<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>

before the script that loads MathJax.

Configuring MathJax

The combined component files, like tex-mml-chtml.js, include default
settings for the various options available in MathJax. You may need
to adjust those to suit your needs. For example, the TeX input
component does not enable single dollar signs as delimiters for
in-line mathematics because single dollar signs appear frequently in
normal text, e.g. “The price is $50 for the first one, and $40 for
each additional one”, and it would be confusing the have “50 for the
first one, and” be typeset as mathematics.

If you wish to enable single dollar signs as in-line math delimiters,
you need to tell MathJax that by providing an explicit MathJax
configuration. That is accomplished by using a <script> tag to
set the MathJax global variable to hold a configuration for
MathJax and placing that script before the one that loads the MathJax
component file that you are using. For example

<script>
MathJax = {
 tex: {
 inlineMath: [['$', '$'], ['\\(', '\\)']]
 }
};
</script>
<script id="MathJax-script" async
 src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js">
</script>

configures MathJax’s TeX input component to use $...$ and
\(...\) as delimiters for inline-math (this enabling single
dollar signs as math delimiters), and then loads the tex-chtml.js
component for TeX input and CommonHTML output.

There are many options that can be set in this way. See the section
on Configuring and Loading MathJax for more details, and on
Configuring MathJax for information on the available options
for the various components.

Putting Mathematics in a Web Page

Once MathJax is configured and loaded, it will look through your web